博客
关于我
【leetcode-数组】有效的数独
阅读量:552 次
发布时间:2019-03-09

本文共 1901 字,大约阅读时间需要 6 分钟。

判断一个 9x9 的数独是否有效。只需要根据以下规则,验证已经填入的数字是否有效即可。

  1. 数字 1-9 在每一行只能出现一次。
  2. 数字 1-9 在每一列只能出现一次。
  3. 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。

上图是一个部分填充的有效的数独。

数独部分空格内已填入了数字,空白格用 '.' 表示。

示例 1:

输入:[  ["5","3",".",".","7",".",".",".","."],  ["6",".",".","1","9","5",".",".","."],  [".","9","8",".",".",".",".","6","."],  ["8",".",".",".","6",".",".",".","3"],  ["4",".",".","8",".","3",".",".","1"],  ["7",".",".",".","2",".",".",".","6"],  [".","6",".",".",".",".","2","8","."],  [".",".",".","4","1","9",".",".","5"],  [".",".",".",".","8",".",".","7","9"]]输出: true

示例 2:

输入:[  ["8","3",".",".","7",".",".",".","."],  ["6",".",".","1","9","5",".",".","."],  [".","9","8",".",".",".",".","6","."],  ["8",".",".",".","6",".",".",".","3"],  ["4",".",".","8",".","3",".",".","1"],  ["7",".",".",".","2",".",".",".","6"],  [".","6",".",".",".",".","2","8","."],  [".",".",".","4","1","9",".",".","5"],  [".",".",".",".","8",".",".","7","9"]]输出: false解释: 除了第一行的第一个数字从 5 改为 8 以外,空格内其他数字均与 示例1 相同。     但由于位于左上角的 3x3 宫内有两个 8 存在, 因此这个数独是无效的。

说明:

  • 一个有效的数独(部分已被填充)不一定是可解的。
  • 只需要根据以上规则,验证已经填入的数字是否有效即可。
  • 给定数独序列只包含数字 1-9 和字符 '.' 。
  • 给定数独永远是 9x9 形式的。

思路:用三个二维数组rawFlagcolFlag以及cellFlag,分别记录行位置的数据是否重复;列位置的数据是否有重复;3*3宫内是否有重复;

class Solution {    public boolean isValidSudoku(char[][] board) {        boolean[][] rowFlag = new boolean[9][9];        boolean[][] colFlag = new boolean[9][9];        boolean[][] cellFlag = new boolean[9][9];                int m = board.length;        int n = board[0].length;        for(int i=0;i
='1'&&cc<='9') { int c = cc-'1'; if(rowFlag[i][c] || colFlag[j][c] || cellFlag[3*(i/3)+j/3][c]) { return false; } rowFlag[i][c]=true; colFlag[j][c] =true; cellFlag[3*(i/3)+j/3][c]=true; } } } return true; }}

 

转载地址:http://ivhiz.baihongyu.com/

你可能感兴趣的文章
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP、CV 很难入门?IBM 数据科学家带你梳理
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP入门(六)pyltp的介绍与使用
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:从头开始的文本矢量化方法
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
NLTK - 停用词下载
查看>>
nmap 使用总结
查看>>
nmap 使用方法详细介绍
查看>>
nmap使用
查看>>
nmap使用实战(附nmap安装包)
查看>>
Nmap哪些想不到的姿势
查看>>
Nmap扫描教程之Nmap基础知识
查看>>